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Abstract

A software package developed for the purpose of feature selection in statistical pat-
tern recognition is presented. The software tool includes both several classical and
new methods suitable for dimensionality reduction, classification and data repre-
sentation. Examples of solved problems are given, as well as observations regarding
the behavior of criterion functions.
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1 Introduction

The most common task in Pattern Recognition is classification of patterns
(“data records”) into a proper class. Problems like this one can be considered
as a part of recognition tasks, computer-aided decision tasks and other applica-
tions as well. One of the most important tasks is the problem of dimensionality
reduction. In order to reduce the problem dimensionality we often use “fea-
ture selection” methods because of their relative simplicity and meaningful
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interpretability of results.

Undoubtedly, many similarities can be found between Pattern Recognition
and Data Mining. Selecting features can be viewed as selection of relational
database columns (and thus the information they hold) by maximizing some
criterion which was defined upon the database content. The usual goal is
to find such a part of the data that holds most of information (suitable for
classification, approximation or other purpose). Storing the rest of the data
may then be considered as wasting the computer memory. Dimensionality
reduction may result not only in improving the speed of data manipulation,

but even in improving the classification rate by reducing the influence of noise.

When combined with data approximation methods, the dimensionality re-
duction process may result in substantial data compression, while the overall
statistical properties remain preserved. Moreover, different ways of data ma-
nipulations and queries become possible without need of access to original

data (which may thus become redundant).

The paper is organized as follows. In the next section the Feature Selection
Toolbox (FST) is briefly described. Then the search strategies implemented in
FST are outlined with references to particular papers where they are discussed
in more detail as this paper is focused more to the software issues description.
The reason is that to discuss here all the feature selection methods is impos-
sible as to each of them a full size paper has been devoted. Conceptually very
different search strategies based on the approximation model are just listed in

section 4, while more examples of FST applications to real world problems are



treated more thoroughly in section 5. The paper is concluded with discussion

of implementation issues and directions of further work.

2 Feature Selection Toolbox

The Feature Selection Toolbox (FST) software has been serving as a platform
for data testing, feature selection, approximation-based modelling of data,
classification and mostly testing newly developed methods. It is used basically
for pattern recognition purposes, however, we used it for solving different

problems related to decision making in economics and other branches as well.

A rather simple user interface was constructed upon a strong functional kernel.
Most of results are generated in a form of textual protocol into the Console
window. Numerical results may be collected to tables and used for generating

graphs. Data may be displayed in a 2D projection.

2.1 What data can the FST process and how ¥

A typical use of the FST consists of the following steps: after opening the
proper data file the user has the option to choose some feature selection
method from the menu. Each method displays a specific dialogue allowing
setting of different parameters specific for the chosen method. Then computa-
tion follows with a thorough listing of performed steps logged into the Console
window. Both optimal and sub-optimal methods find the resultant feature sub-
set and the corresponding criterion value. On the other hand, approximation

methods generate data model which may be further used. Beside basic use for



feature selection the software package may also be used for basic classification

purposes and different manipulations of data files.

As the feature selection process may be time consuming (particularly for high
dimensional data), a thorough information about the current computation
state, current dimensionality, currently best criterion value, current direction
of search and numbers of performed and expected computational steps are

displayed during the algorithm run.

Because of strong diversification of data formats used for scientific purposes
we adopted a most general way of data storage - standard text files containing
numerical values in ANSI C format. Files must begin with a simple textual
header containing information about the number of classes, class members,
dimensionality etc. Correct files may be processed using the file manipulation
tool to change the number of classes, join or cut files, delete features etc. To
extend the usability of F.S.Toolbox we plan to equip it with a special Data
Import Filter allowing conversion (user-controlled, if necessary) of virtually
any text file into a usable form. This relates especially to files with strange
ordering, strange formatting etc. The current version of FST supports three

types of text data files:

e Data files containing samples (identified by .trn extension) - data have the
form of number vectors representing individual samples (patterns). They
should be ordered according to classes, then according to samples (vectors
- points in pattern space) inside classes, then according to features inside

samples. Such a data ordering may be viewed as a file of relational databases



(classes) with numerical values. It is possible to construct an approximation
model upon such data (.apx file type), also data structure in a form of mean
vectors and covariance matrices may be estimated from .trn file (generates
a .dst type file). Sample files may be used for feature selection, classification
of unknown data or estimating the classification error rate.

e Data structure files containing mean vectors and covariance matrices (iden-
tified by .dst extension) - This data form is suitable for use with optimal
and sub-optimal feature selection methods based on feature set evaluation
criteria like Bhattacharyya distance etc.

e Approximation model files (identified by .apx extension) - are generated by
approximation or divergence method. These files may serve for classification

of sample files (.trn) with pseudo-Bayes classifier.

3 Search strategies for feature selection

Feature selection can be viewed as a special case of a more general subset
selection problem. The goal is to find a subset maximizing some adopted
criterion. In case of feature selection we usually use some probabilistic inter-
class distance measures or better directly the classifier correct classification

rate.

The list of implemented criterion functions is as follows (for details see e.g.
Devijver, Kittler [1]): Bhattacharyya distance, Mahalanobis distance, General-
1zed Mahalanobis, Patrick-Fischer distance, Divergence. It as also possible to

maximize functions programmed in external executables. In this way we are



able to minimize error rates of different classifiers etc.

Feature selection methods can be divided to optimal and sub-optimal ones.
The only universal method for finding optimal solution (feature subset yield-
ing maximum value of criterion function) is exhaustive search (Cover [2]).
However, this method is unusable for problems of higher dimensions because
of its exponential time complexity. The practical problem dimension limita-
tion given by the current state of computer hardware is approximately 40 for
exhaustive search (if selecting 20 features). This limit will remain prohibitive

in the future.

The only alternative to exhaustive search, yielding the optimal solution, are
the Branch and Bound based algorithms (e.g. Fukunaga [3], Devijver, Kit-
tler [1]). These algorithms are limited to monotonic criteria only. Their speed
strongly depends on the data (classical Branch & Bound may run several
times faster than exhaustive search but on the other hand it may be even
slower). The FST implements the exhaustive search as well as several versions
of Branch & Bound (BB) algorithms including the currently fastest prediction-

based ones:

e The Basic Branch € Bound algorithm as described in Narendra, Fuku-
naga [4]. This is the slowest Branch & Bound algorithm, implemented here
for comparison purposes.

e The Enhanced Branch & Bound algorithm described e.g. in Fukunaga [3].
This is the most widely used algorithm version, having been accepted as the

fastest optimal algorithm so-far. It utilises a heuristics for effective reduction



of the number of candidate subsets. Our implementation further improves
its performance by means of generating the minimum solution tree (see Yu
and Yuan [5]). This algorithm has served as a reference for evaluation of the
following prediction-based algorithms.

e The Fast Branch & Bound (FBB) algorithm described in Somol et al. [6]
investigates differences between criterion values before and after individual
feature removal. This information is later used (under certain circumstances)
to quickly predict criterion values in certain search-tree nodes instead of
slowly compute the real value. For more details about how to preserve op-
timality using this scheme see the cited paper.

e The Branch & Bound with Partial Prediction (BBPP) by Somol et al. [7] ad-
dresses the problem of recursive criterion computation which is not possible
using the FBB. In contrary to FBB the BBPP cannot skip criterion compu-
tations in search-tree nodes. However it uses a prediction-based heuristics
for effective ordering of tree nodes which makes it still faster than classical

branch and bound algorithms.

However, all the optimal methods are practically unusable for problems of 100s
or 1000s of dimensions. A lot of time was therefore invested into development

of sub-optimal methods.

Sub-optimal methods cannot guarantee optimal solutions. However, they can
yield optimal or near-optimal results in most cases. The speed of sub-optimal
methods is generally significantly higher than the speed of optimal methods.

The trade off between the quality of found results and spent time may be



often altered by setting user parameters. The FST includes both sub-optimal

methods known from literature (for overview see e.g. Devijver, Kittler [1] or

Jain [8]) and methods developed recently in our department:

The Sequential Forward Search (SFS) and its backward counterpart SBS
— basic methods known for their simplicity and speed. They yield worse
results than other listed methods (Devijver, Kittler [1]).

The Plus-L-Minus-R — this method is the first one handling the nesting-
effect problem (Devijver, Kittler [1]).

Generalized forms of previous methods — based on group-wise feature test-
ing, they may find better solutions but at the cost of increased time com-
plexity (Devijver, Kittler [1]).

The Floating Search methods (SFFS, SFBS) — fast and powerful methods,
most suitable for general use (Pudil et al. [9]). They have been evaluated as
the currently best sub-optimal methods for feature selection (Jain [8]).
The Adaptive Floating Search methods (ASFFS, ASFBS) — While requiring
more computational time these methods allow finding better solutions than
floating search, if floating search fails to find optimum (Somol et al. [10]).
The Oscillating Search method (OS) —a method featuring wide possibilities
of being altered through user parameters. It allows both very fast and very
thorough search. Because of its different search principle this method may
become an interesting alternative to the methods described above, because
it yields the best solutions in isolated cases. It can also be used to refine the
solution found by other methods. The search may be limited also by the

time constraint (Somol et al. [11]).



4 Approximation model based methods

Approximation model based methods represent a different but powerful ap-
proach to dimensionality reduction and classification especially in cases of
multi-modal and non-gaussian data. The approach is based on approximating

unknown conditional pdfs by finite mixtures of a special product type.

Two different methods are available: the ”approximation” method is suitable
mainly for data representation (Pudil et al. [12]), the "divergence” method
is based on maximizing the Kullback’s J-divergence and is more suitable for

discrimination of classes (Novovicova et al. [13]).

Both the methods encapsulate the feature selection process into the statisti-
cal model construction. The importance of these methods follows from their
independence on a priori knowledge related to the data. Generic data may be

processed without preparation.

The definition of approximation model based methods is followed by defin-
ing the "pseudo-Bayes” classifier. The title “pseudo-Bayes” is used since the
probabilities in Bayes formula are replaced by their approximations and also

because the decision is made in a lower-dimensional subspace.

Those readers who would like to learn more details of this approach are referred
to the papers cited just above, however, to get an idea, we provide here a brief
description of the approach (which is, however, not necessary for reading this

paper,so those not interested in formulas can skip the rest of this section).



For the cases when we cannot even assume that class-conditional pdfs are
unimodal and the only available source of information is the training data,
a new approach has been developed based on approximating the unknown
class conditional distributions by finite mixtures of parametrized densities of

a special type.

The following modified model with latent structure for wth class-conditional

pdf of x has been suggested in the considered approach presented in Pudil et al.

[12]:
p(x[6%) = 3 aizpu(xke) = 3 a0l (<15, o, ®), (1)

where ©¥ = {a¥, 0% 60y, ®;m = 1,...,M,} is the complete set of unknown
parameters of the finite mixture (1), M, is the number of artificial subclasses
in the class w, o is the mixing probability for the mth subclass in class w,
0 <a¥ <1, YoM o2 = 1. Each component density p,,(x|w) includes a
nonzero 'background’ probability density function gy, common to all classes:

D
gU(X|00) = Hf(l‘z|9()z), 90 = (901,902,...,001)) (2)

=1

and a function g specific for each class of the form:

= z|05;
g(x16. 00, @) = ] [%

=1

oi
] = {01} 3)

02 = (01,02, ...0%,), ©=(¢1,02,...,0p) € {0,1}".

The proposed model is based on the idea to posit a common ’background’

density for all classes and to express each class-conditional pdf as a mixture of a
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product of this "background’ density with a class-specific modulating function
defined on a subspace of the feature vector space. This subspace is chosen by
means of the parameters ¢; and the same subspace of feature vector space for
each component density is used in all classes. Any specific univariate function
f(z;]60¥,) is substituted by the ’background’ density f(xz;|0y;) whenever ¢; is
zero. In this way the binary parameters ¢; can be looked upon as control
variables since the complexity and the structure of the mixture (1) can be
controlled by means of these parameters.

For any choice of ¢; the finite mixture (1) can be rewritten by using (2) and

(3) as
p(x[0.) = il a, [[l[f(xi|90i)17¢if(xi|9;qdzi)¢i]' (4)

Setting some ¢; = 1, we replace the function f(z;|0;) in the product in (4)

by f(x;|6“,) and introduce a new independent parameter 6¥ . in the mixture
(4). The actual number of involved parameters we specify by the condition

D gi=v 1<y<D.

The proposed approach to feature selection based on the finite mixture model
(4) is somewhat more realistic than the other parametric approaches. It is
particularly useful for the case of multimodal distributions when other feature
selection methods based on distance measures (e.g. Mahalanobis distance,
Bhattacharyya distance), would totally fail to provide reasonable results as
has been shown in Pudil et al. [12] and Novovicova et al. [13]. An important

characteristic of our approach is that it effectively partitions the set X of
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all D features into two disjunct subsets X; and Xp — Xy, where the joint
distribution of the features from Xp — X, is common to all the classes and
constitutes the background distribution, as opposed to features forming Xy,
which are significant for discriminating the classes. The joint distribution of
these features constitutes the ’specific’ distribution defined in (3). According
to these features alone, a new pattern x is classified into one of C' classes and
under this partition of the feature set Xp either the Kullback-Leibler distance
is minimised (so called "approximation method’) or the Kullback J-divergence
is maximised (so called ’divergence method’). Two proposed methods yield
the feature subset of required size without involving any search procedure.
Furthermore, in the inequality for the sample Bayes decision rule assuming
model with latent structure (4), the 'background’ density go is reduced and
therefore, the new approach provides a pseudo-Bayes decision plug-in rule em-
ploying the selected features. Consequently, the problems of feature selection

and classifier design are solved simultaneously.

It should be emphasized that although the model looks rather unfriendly, its
form leads to a tremendous simplification (see Pudil et al. [12]) when the
univariate density f is from the family of Gaussian densities. The use of this

model (4) makes the feature selection process a simple task.

5 Application examples

Perhaps the best way of introducing the FST software scope is demonstration

on task examples. We used real data-sets:
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- 2-class, 15-dimensional speech data representing words "yes” and "no” ob-
tained from the British Telecom, classes separable with great difficulties,

- 2-class, 30-dimensional mammogram data representing benign and malig-
nant patients, obtained from the Wisconsin Diagnostic Breast Center via
the UCI repository — ftp.ics.uci.edu,

- 3-class, 20-dimensional marble data representing different brands of marble

stone, data are well separable.

5.1 Classification task example

Using the FST we compared the performance of gaussian classifier to the
pseudo-Bayes classifier, defined especially for use with multimodal data, and
defined in relation to ”approximation” and ”divergence” methods (c.f. sec-
tion 4). The following Table 1 illustrates the potential of the approximation
model based classifiers. However, it also illustrates the necessity of experi-
menting to find a suitable number of components (the issue is discussed e.g.

in Sardo [14]).

Results were computed on the full set of features. In case of approximation
and divergence method the algorithms were initialized randomly (1st row)
by means of the "dogs & rabbits” cluster analysis pre-processor (2nd row).
Classifiers were trained on the first half of the dataset and tested on the

second half.

Table 1 demonstrates a potential of mixture approximation methods — with

5 mixture components (see column approx.5c) for the speech data and 1, 5
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or 20 components for mammo data. The data underlying structure has been
modeled precisely enough to achieve a better classification rate when compared
to the gaussian classifier. Second rows contain approximation and divergence
method results after preliminary initialization by means of the so-called ”dogs
and rabbits” clustering method (McKenzie et al. [15]). The method is inspired
by the self-organizing-map principle. Single training set samples are processed
sequentially in order to slightly attract the closest cluster candidate center. In
this way the "dogs and rabbits” method identifies effectively cluster centers
and its results may be used for setting initial component mean parameters,
however component sizes (variation parameters) have to be specified otherwise,

e.g. randomly.

5.2 Dimensionality reduction task example

The table screen-shot in figure 3 stores error rate values achieved by the ap-
proximation and divergence methods with different number of components.
Columns represent selected subset sizes. From this table it is possible to
guess that single component modeling is not sufficient, best results have been
achieved with approximately 5 or more 7 components and 12 or more features.
It id fair to say that this somewhat ”guessing” way of specifying the suitable

number of selected features is often the only applicable one.

Figure 4 a) demonstrates the performance of sub-optimal feature selection
methods being used for maximizing gaussian classifier performance. Figure 4

b) demonstrates different speed of different optimal feature selection methods
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on the mammogram data-set. All the optimal methods (except the exhaustive
search) are based on the Branch & Bound idea and are restricted for use with

monotonous criterion functions only.

5.8 A different view to criterion functions - experimental comparison

An interesting problem may be to judge the importance of individual features
in real classification tasks. Although in decision theory the importance of every
feature may be evaluated, in practice 1) we usually lack enough information
about the real underlying probabilistic structures and 2) analytical evalua-
tion may become computationally too expensive. Therefore many alternative

evaluation approaches were introduced.

It is generally accepted in order to obtain reasonable results, the particular
feature evaluation criterion should relate to particular classifier. From this
point of view we may expect at least slightly different behavior of the same

features with different classifiers.

However, because of different reasons (performance and simplicity among oth-
ers) some classifier-independent criteria - probabilistic distance measures -
have been defined. For a good overview and discussion of their properties see
Devijver, Kittler [1]. The ”approximation” and ”divergence” methods (c.f. sec-
tion 4) also incorporate a feature evaluation function, which is closely related

to the purpose of these respective methods.

In our example (Table 2) we demonstrate the differences of criterion functions
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implemented in the FST. We evaluated single features using different criteria
and ordered them increasingly according to the obtained criterion values. In
this way "more distinctive” features appear in the right part of the table, while

the "noisy” ones should remain in the left.

Discussion about the differences between different criteria behavior would be
behind the scope of this paper. Let us point out some particular observations
only. Traditional distance measures (top 4 table rows) gave similar results, e.g.
feature 14 has been evaluated as important, 7 or 1 as less important. Results
of the divergence method based evaluation remain relatively comparable, even
if the result depends on the number of used components. More dissimilarities
occurred in the approximation method based evaluation - this is caused by
a different nature of approximation criterion which rates the features not ac-
cording to their suitability for classification, but for data representation in

subspace only.

Our second example (Table 3) demonstrates criteria differences in another
way. We selected subsets of 7 features out of 15 so as to maximize particular
criteria to compare the differences of found ”optimal” subsets. Again, results
given by traditional distance measures are comparable. Differences between
subsets found by means of approximation and divergence methods illustrate
their different purpose, although still many particular features are included in

almost every found subset.

Additionally, the ”worst” subset minimizing the Bhattacharyya distance has

been found for illustration only.
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5.4 A different view to criterion functions - visual subspace comparison

The FST may be used to obtain a visual illustration of selected feature subsets.
Our examples illustrates spatial properties of different data sets (easily sep-
arable 3-class marble set in Figure 5, a worse separable 2-class mammogram
set in Figure 6 and the speech set). We selected feature pairs yielding optimal
values of different criteria. Pictures a)—c) illustrate subsets given by means of
optimizing different probabilistic distance measures, d) illustrates the Approx-
imation method (5 components), e) the Divergence method (5 components).
As opposed to subsets selected for class discrimination the picture f) illus-
trates an example of ”bad” feature pairs being not suitable for discrimination.

Picture f) was obtained by means of minimizing the Bhattacharyya distance.

6 Implementation issues

Feature Selection Toolbox software has been developed for three years. It
has a form of 32bit Windows application. The kernel incorporates all the
procedures written in ANSI C language. This kernel is connected to a user
interface which has been developed in (Sybase) Powersoft Optima++ 1.5 RAD
compiler (today known ac Power++). Most of programming work is done
by 1-2 programmers, theoretical questions, definitions and specifications are
consulted within a team of 4-5 programmers and researchers (see Pudil et al.
[16]). The programming work was focused on keeping high quality of kernel

functions. As describing all kernel code properties would go behind the scope

17



of this paper, let us mention their general properties only.

Dimensionality reduction algorithms may often be strongly time-consuming.
The kernel code is therefore optimized for speed (especially when access-
ing complicated multidimensional memory structures). The speed of criterion
function value computations is the most important issue when programming
such enumeration algorithms, where the criterion value is repeatedly calcu-
lated. Even if speed was the main goal, we did not omit mechanism for error

recovery etc. (e.g. incorrect properties of data in file).

Most subset search algorithms are defined in two forms according to the pre-
vailing direction of search: forward and backward. The forward search starts
with an empty feature subset. Features are then added to it stepwise. The
backward search starts with the full set from which features are removed in
a stepwise manner. However, adding and removing steps may be combined in
the course of one algorithm. Single steps may process not only single features,
but also groups of features. In order to be able to implement even complex
variants of algorithms like e.g. oscilling search, it was necessary to develop
some fast and flexible way of working with features in such complicated algo-
rithms. For this purpose we use a special vector (having the same size as the
full feature set) representing states of every single feature. In general, positive
values represent currently selected features, other values represent excluded
features. Different values denote features in different states of processing (def-
initely selected feature, conditionally selected feature etc.). We mention the

existence of this vector because of its following advantage: by a relatively sim-
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ple exchange of values of several variables we are able to switch the search
direction as well as other algorithm properties. As a result, the coding is
simplified since just one code is needed for either search direction (forward
or backward) only; switching to the opposite one is then simple. It should
be noted, that such a “compact” code does not reduce the algorithm speed
in comparison to separate algorithm versions. Moreover, the code has become
more lucid and the debugging time decreased, too. Our coding approach allows
also a relatively straightforward implementation of very complicated versions

of combined algorithms.

7 Future work and use

Results obtained using the F.S.Toolbox have been repeatedly used in our work
for several research projects. Feature selection has been performed on different
kinds of real world data. The kernel code is being flexibly altered for use in
different situations (e.g. for comparison of statistical and genetic algorithm
approaches to feature selection, see Mayer et al. [17]). FS Toolbox serves as a
testing platform for development of new methods. Several directions of future
development are possible. Undoubtedly, modification of the code to a parallel
version would be beneficial. As far as the user interface is concerned, several
improvements are possible. The same holds for the whole package which is
built as open one with the intention to implement newly developed methods
in future. In addition, for the future we plan to build a sort of expert or

consulting system which would guide an inexperienced user into using the
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method most convenient for the problem at hand.

We believe that not only pattern recognition community but also researchers

from various other branches of science may benefit from our work.
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& Feature Selection Toolbox

File  Methods Classfiers  Window Options  About

=181x]

| Console Window ¥ Resuts Windaw ¥ Apros. araph

TRM: 'C:Adata\Speech.tm', features: 15, classes: 2 [682,736), "Manip
DST: 'enerated., classes: 2. features: 15, "Estimated from 'C:hdatahS
AP,

Console

E stimating <cov> from the data file

done.

S equential Fonward Search:

on file ‘generated’, started on Tue Jan 16 14:17:04 2001

Size 1. Walue 0510839, enums 15, set 12

Size 2, Walue 0658476, enums 29, set 1214

Size 3, Walue 0020457, enums 42, set 41214

Size 4, Walue 113236, enums 54, set 341214

Size 5, Walue 1.36405, enums B5, set 34101274

Size B, Walue 1.51945, enums 75, 52t 3410127314

Size 7, Walue 1661, enums 24, set 34510121314

Size 8, Walue 179459, enums 92, 5et 34 51011121314
Size 9, Walue 187771, enums 99, 5t 345710111213 14
Size 10, Value 1.98346, enums 105, set 345671011 121314
Size 11, Value 215843, enums 110, set 3466 781011127314
Size 12, Value 2 26033, enums 114, set 34567831011 121314
Siee 13, Value 228719, enums 117, 52t 23466789101112131
Size 14, Value 2 36652, enums 119, 52t 1 234567 8910111212
Size 15, Value 240127, enums 120,52t 01 234567891011 12
T otal time elapsed: 00:00:01, Enumerations: 120, Criterion code: 1
tdax value: 240127, Final subset [size 153 0123456783101 7

Dsciling Search++ [delta 2,00 init: sfs):

on filz ‘generated’, staed on Tue Jan 16 14:17:14 2001
(max_r_advantage = 0]

T otal time elapsed: 00:00:00, Enumerations: 144, Criterion code: 1
tday value: 1.661, Final subset [size 7): 34510121314

Dscilling Search+ [delta 4.0.0init: sfs)
on file ‘generated’, started on TueJan 16 14:17:21 2001

& DOptimal search
~D5T

x|

Classes: 2
Features : 15

- Criterion

&+ Measure : IEhattachawa =] T Minimize

Pair-wise criteria an multiclass : | weighted sum 'I

& | (Slassiten: (Under constcton]

O Eemal el |

™~ Exhaustive search
& B.aB. [Full Sort)
€ B.aB. (Patial Sor]

 B.aB. Pattial Predicion ¢ B.aB. [No St + AL
€ FastB.aB (Partial]

Reliable: |5
" FastB.aB elese

I= | Frediction update Fatigue =1kl ast value importance] |20

% Find single subset with size : |7 _I::
 Find subsets with sizes from : |1 = i _|:[

¢ B.aB. (Mo Sort)
£ B.aB. [NoSart IRnd Delay)

Sensitivity :| 11

i Exhaustive / Branch and Bound search————————————————

I ResullstobulferNo. [T =

osuts
peech data dogs & rabbits init H ﬂ Graph C ﬂ
GOwer | THe | 1 | 2z | 3
Aprow[c1] | 22680645 | 18.226806 | 15 8064*
Aprow[c5] | 31.451613| 19677413 21.7741¢
£ Aprow [c10] 227415935 | 21.612503 | 21.7741¢
Aprow [c20) 227415935 | 26645161 | 26.2303:
Diverg.(c1] 40.000000 | 33.064516 33.6709¢
Diverg(c5) 45.483871 | 13307097 14.8387°
Diverg(c1C 35.322581 | 17.096774 13.0645°
Diverg(c20 31.612903 | 32903226 33.7036;
00:00:31 | 00:00:36 | 00:00:59

-

=IO &

+imes

>

e 16, Max'r: 8

AN

(max_r_advantage = 4] Cancel I HEl) I
T otal time elapsed: 00:00:00, Enumerations: 377, Criterion code: 1
Mai value: 1.67522, Final subset [size 7L 67810111214
Oscilling Searcht+ [delta 7.0,0 init: random). .
on file ‘generated’, started on TueJan 16 14:17:30 2001
(max_r_advantage = 4]
Total time elapsed: 00:00:01, Enumerations: 740, Criterion cade: 1
Mai value: 1.67522, Final subset [size 7L 67810111214
=
4| | 3
|L\nes148 Chars 6312 ¢ Buffer 3% 4 1

Fig. 1. Feature Selection Toolbox — Windows GUI workplace
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Fig. 2. Visual comparison of 2D projections of approzimation models estimated by
means of the approzimation method on marble data (see in text): a) single mizture
component, b) 2 mizture components, c¢) 5 mizture components. Ellipses illustrate
the equipotential component planes, component weights are not displayed.
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approx. | approx. | approx. | approx.
gauss lc o¢ 10c 20c

speech (random init.) | 8.39 21.61 7.58 9.19 9.03
) - 21.61 7.42 6.45 8.39
)| 5.96 5.26 5.26 5.96 4.56
) - 5.26 5.26 5.96 5.96

data (dogs & rabbits init

mammo (random init

data (dogs & rabbits init.

Table 1

Error rates [%] of different classifiers with different parameters. The ’gauss’ column
contains results of a gaussian classifier. Other columns contain results obtained
using the ’approximation’ method (in this case the ’divergence’ method yielded
the same results). Results in second lines have been obtained after preliminary
cluster-detection used to initialise the ’approximation’ method. Note: 5c means 5
components of mixture, etc.
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ISpeech data, dogs & rabbits init, enar rates

)

| e | 1 2 3 1 5 6 7 8 3 10 11 12 | s W] s |
0 |bpon(ct) 2258 1822 1580 1677 1725 1838 1935 2032 080 2112 2112 277 080 2145 | 2161
1 |bpon(c5) 3145 1967 | 2177 1951 | 2123|3354 | z241 1483 1532 951 B/ 832 78 883 |79
2 |ppon(cll) 2274|2161 277 1887 2322|2241 277 1870 967 725 7e8 785 693 B33 | 758
3 |ppoalc2) 2274|2564 2823 2350 2306|2080 2145 1725 106 1177 1016 803 G54 780 |83
4 |Diverglcl) 4000 | 3306 387 2370 | 2225|233 2451 2387 2306 2370 238 261 2080 0% | 2161
5 |Dierglcf) 4548 1333 1483 1708 1548 1332 1006 935 806 822 633 Gl 551 B33 |79
6 |DiverglelC 3632 1708 1306 838 | 725 1354 1645 1483 1268 780 |87 735 |8mW 74 7.58
7 |Divegloal B 3280 A zmE4 183z 1209 (1132 (145 806 1032 1048 693 78 74 838

Fig. 3. Approximation model based methods performance on the speech data. The
screenshot shows the way FST stores numerical results. Different lines may be se-
lected for graph display using specified colors and/or line thickness and shapes, as

shown on Fig. 4.
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@ Graph

Subset selechion based on masinizing gaussian classificalion accuracy, sonar data, B0-dm, 2 classes
[1 L

I [=1E3
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@ Graph

I [=1E3

Computational Tme, search of oplimal

, Mammogram data, 30-dim, 2 classes

[113e+004 |

0

EMF
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S — e -me-

a)

Fig. 4. Subset search methods performance as shown by the FST graphic output.
The left picture demonstrates sub-optimal methods performance comparison, i.e.
maximal achieved criterion values for subsets of 5 to 2/ features. The right pic-
ture demonstrates optimal methods performance comparison, i.e. computational time
needed to find optimal subsets of 1 to 29 features.
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Bhattacharyya | 7 1 4 2 5 0 3 6 10 8 13 9 11 14 12
Divergence | 7 1 4 2 0 5 6 3 10 8 13 9 11 12 14
G.Mahalanobis | 7 1 4 5 2 3 6 8 0 13 10 11 9 14 12
Patrick Fisher | 7 1 4 3 2 0 6 5 10 9 8 13 12 11 14
approx.le | 7 1 4 2 0 5 6 3 10 8 13 9 11 12 14
approx.5c | 0 13 1 4 12 7 10 3 2 5 9 14 11 6 8
approx.10c | 0 13 1 12 4 7 2 10 3 14 5 9 6 8 11
approx.20c | 0 12 13 1 4 7 10 2 3 14 9 5 11 6 8
diverg.lc | 10 7 4 12 1 0 9 2 11 6 13 3 5 & 14
diverg.bc | 5 12 8 1 0 7 6 2 4 9 10 13 3 11 14
diverg.10c | 5 8 6 7 1 4 10 0 2 9 12 13 3 11 14
diverg.20c | 1 6 5 8 2 10 7 3 11 9 12 0 14 13 4
Table 2

Criterion functions comparison on 2-class speech data. Single features have been
ordered increasingly according to individual criterion values, i.e. the ”individual
discriminative power”.
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opt. Bhattacharyya - - - 6 7 8 10 11 12 - 14
opt. Divergence - - - 6 7 8 9 10 11 - - 14
opt. G.Mahalanobis 3 4 - 6 7 - 9 10 - 12 - -
opt. Patrick Fisher - - - 6 7 8 9 10 11 - - 14
approx.lc - - - § 9 10 11 12 13 14
approx.sc - - 5 6 - 8 9 - 11 - - 14
approx.10c 3 - 5 6 - 8 9 10 11 - - -
approx.20c 3 - 5 6 - 8 9 10 11 - - -
diverg.lc 3 - 5 6 - 8 - - 11 - 13 14
diverg.5c 3 4 - - - - 9 10 11 - 13 14
diverg.10c 3 - - - - -9 - 11 12 13 14
diverg.20c -4 - - - -9 - 11 12 13 14
worst Bhattacharyya 3 - 5 6 - 8 - - - - - -

Table 3

Criterion functions comparison on 2-class speech data. The table shows subsets of
7 features selected to maximize different criteria. In contrary the last line shows a

criterion-minimizing subset
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d) e) f)

Fig. 5. Visual comparison of 2D subspaces found on 20-dimensional marble data by
mazximizing: a) Bhattacharyya (the same was found by Generalized Mahalanobis),
b) Divergence, c¢) Patrick-Fischer distances. Mizture model methods using 5 com-
ponents results: approzimation method - d), divergence method - e). Picture f)
demonstrates a subspace unsuitable for discrimination (found by minimizing the
Bhattacharyya distance).
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Fig. 6. Visual comparison of 2D subspaces found on less separable 30-dimensional
mammogram data by mazimizing: a) Bhattacharyya (the same was found by Di-
vergence), b) Generalized Mahalanobis, ¢) Patrick-Fischer distances. Mizture model
methods using 5 components results: approzimation method - d), divergence method
- ¢). Picture f) demonstrates a subspace unsuitable for discrimination (found by
minimizing the Bhattacharyya distance).
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